
Big Bad PostgreSQL
A Case Study

1

Moving a

“large,”
“complicated,” and

mission-critical
datawarehouse

from Oracle
to PostgreSQL

for cost control.

1

Scalable Internet Architectures
With an estimated one billion users worldwide, the Internet today is nothing less than a
global subculture with immense diversity, incredible size, and wide geographic reach. With a
relatively low barrier to entry, almost anyone can register a domain name today and potentially
provide services to people around the entire world tomorrow. But easy entry to web-based
commerce and services can be a double-edged sword. In such a market, it is typically much
harder to gauge interest in advance, and the negative impact of unexpected customer traffic
can turn out to be devastating for the unprepared.

In Scalable Internet Architectures, renowned software engineer and architect Theo
Schlossnagle outlines the steps and processes organizations can follow to build online
services that can scale well with demand—both quickly and economically. By making
intelligent decisions throughout the evolution of an architecture, scalability can be a matter
of engineering rather than redesign, costly purchasing, or black magic.

Filled with numerous examples, anecdotes, and lessons gleaned from the author’s years
of experience building large-scale Internet services, Scalable Internet Architectures is both
thought-provoking and instructional. Readers are challenged to understand first, before they
start a large project, how what they are building will be used, so that from the beginning
they can design for scalability those parts which need to scale. With the right approach, it
should take no more effort to design and implement a solution that scales than it takes
to build something that will not—and if this is the case, Schlossnagle writes, respect
yourself and build it right.

Schlossnagle

DEVELOPER’S
LIBRARY

$49.99 USA / $61.99 CAN / £35.99 Net UK

Internet/Programming

www.developers-library.com

DEVELOPER’S
LIBRARY

Cover image © Digital Vision/Getty Images

Theo Schlossnagle is a principal at OmniTI Computer Consulting, where he provides
expert consulting services related to scalable Internet architectures, database replication,
and email infrastructure. He is the creator of the Backhand Project and the Ecelerity MTA,
and spends most of his time solving the scalability problems that arise in high performance
and highly distributed systems.

S
calable Internet Architectures

Scalability
Performance
Security

www.omniti.com

Scalable Internet
Architectures

Theo Schlossnagle

!"#$%%&'!()*)+*,'-./,0.,/123455$6#"67$55"8"95:;55:)<,59

About the Speaker

Principal @ OmniTI

Open Source

mod_backhand, spreadlogd,
OpenSSH+SecurID, Daiquiri,
Wackamole, libjlog, Spread, etc.

Closed Source

Ecelerity and EcCluster

Author

Scalable Internet Architectures

2

Glossary
OLTP

Online Transaction Processing

ODS

Operational Datastore

(a.k.a. Data Warehouse)

3

Datawarehouse

Log Importer

Data Exporter

OLTP warm backup

OLTP

Oracle 8i

0.5 TB

Hitachi

0.25 TB

JBOD

Oracle 8i

0.75 TB

JBOD

MySQL 4.1

1.2 TB

IDE RAID

MySQL

log importer

1.2 TB

SATA

RAID

Oracle 8i

0.5 TB

Hitachi

1.5 TB

MTI

Overall Architecture
OLTP instance:
drives the site

Warm spare

bulk selects
data exports

Log import and
processing

4

Database Situation
The problems:

The database is growing.

The OLTP and ODS/warehouse are too slow.

A lot of application code against the OLTP system.

Minimal application code against the ODS system.

Oracle:
Licensed per processor.

Really, really, really expensive on a large scale.

PostgreSQL:
No licensing costs.

Good support for complex queries.

5

Database Choices
Must keep Oracle on OLTP

Complex, Oracle-specific web application.

Need more processors.

ODS: Oracle not required.
Complex queries from limited sources.

Needs more space and power.

Result:
Move ODS Oracle licenses to OLTP

Run PostgreSQL on ODS

6

PostgreSQL gotchas
For an OLTP system that does thousands of
updates per second, vacuuming is a
hassle.

No upgrades?!

Less community experience with large
databases.

Replication features less evolved.

7

PostgreSQL ♥ ODS
Mostly inserts.

Updates/Deletes controlled, not real-time.

pl/perl (leverage DBI/DBD for remote
database connectivity).

Monster queries.

Extensible.

8

Choosing Linux
Popular, liked, good community support.

Chronic problems:

kernel panics

filesystems remounting read-only

filesystems don’t support snapshots

LVM is clunky on enterprise storage

20 outages in 4 months

9

Choosing Solaris 10
Switched to Solaris 10

No crashes, better system-level tools.

prstat, iostat, vmstat, smf, fault-management.

ZFS

snapshots (persistent), BLI backups.

Excellent support for enterprise storage.

DTrace.

Free (too).

10

Oracle features we need
Partitioning

Statistics and Aggregations

rank over partition, lead, lag, etc.

Large selects (100GB)

Autonomous transactions

Replication from Oracle (to Oracle)

11

Partitioning

Next biggest tables: 850m, 650m, 590m

Allows us to cluster data over specific ranges
(by date in our case)

Simple, cheap archiving and removal of data.

Can put ranges used less often in different
tablespaces (slower, cheaper storage)

pgods=# select count(1) from ods.ods_tblpick_super;
 count

 1790994512
(1 row)

For large data sets:

12

Partitioning PostgreSQL style

PostgreSQL doesn’t support partition...

It supports inheritance... (what’s this?)

some crazy object-relation paradigm.

We can use it to implement partitioning:

One master table with no rows.

Child tables that have our partition constraints.

Rules on the master table for insert/update/delete.

13

Partitioning PostgreSQL realized

Cheaply add new empty partitions

Cheaply remove old partitions

Migrate less-often-accessed partitions to slower storage

Different indexes strategies per partition

PostgreSQL >8.1 supports constraint checking on
inherited tables.

smarter planning

smarter executing

14

RANK OVER PARTITION
In Oracle:

In PostgreSQL:

select userid, email from (
! ! select u.userid, u.email,
! ! row_number() over
 (partition by u.email order by userid desc) as position
! ! from (...)) where position = 1

FOR v_row IN select u.userid, u.email from (...) order by email, userid desc
LOOP
! IF v_row.email != v_last_email THEN
! ! RETURN NEXT v_row;
! ! v_last_email := v_row.email;
! ! v_rownum := v_rownum + 1;
! END IF;
END LOOP;

15

Large SELECTs

The width of these rows is about 2k

50 million row return set

> 100 GB of data

select u.*, b.browser, m.lastmess
 from ods.ods_users u,
 ods.ods_browsers b,
 (select userid, min(senddate) as senddate
 from ods.ods_maillog
 group by userid) m,
 ods.ods_maillog l
 where u.userid = b.userid
 and u.userid = m.userid
 and u.userid = l.userid
 and l.senddate = m.senddate;

Application code does:

16

The Large SELECT Problem

libpq will buffer the entire result in memory.

This affects language bindings (DBD::Pg).

This is an utterly deficient default behavior.

This can be avoided by using cursors

Requires the app to be PostgreSQL specific.

You open a cursor.

Then FETCH the row count you desire.

17

Big SELECTs the Postgres way

DECLARE CURSOR bigdump FOR
select u.*, b.browser, m.lastmess
 from ods.ods_users u,
 ods.ods_browsers b,
 (select userid, min(senddate) as senddate
 from ods.ods_maillog
 group by userid) m,
 ods.ods_maillog l
 where u.userid = b.userid
 and u.userid = m.userid
 and u.userid = l.userid
 and l.senddate = m.senddate;

FETCH FORWARD 10000 FROM bigdump;

The previous “big” query becomes:

Then, in a loop:

18

Autonomous Transactions
In Oracle we have over 2000 custom stored
procedures.

During these procedures, we like to:

COMMIT incrementally
Useful for long transactions (update/delete) that
need not be atomic -- incremental COMMITs.

start a new top-level txn that can COMMIT
Useful for logging progress in a stored procedure
so that you know how far you progessed and
how long each step took even if it rolls back.

19

PostgreSQL shortcoming
PostgreSQL simply does not support
Autonomous transactions and to quote
core developers “that would be hard.”

When in doubt, use brute force.

Use pl/perl to use DBD::Pg to connect to
ourselves (a new backend) and execute a
new top-level transaction.

20

Replication
Cross vendor database replication isn’t too difficult.

Helps a lot when you can do it inside the database.

Using dbi-link (based on pl/perl and DBI) we can.

We can connect to any remote database.

INSERT into local tables directly from remote
SELECT statements.
[snapshots]

LOOP over remote SELECT statements and
process them row-by-row.
[replaying remote DML logs]

21

Snapshot mapping

pgods=# \d avail.snapshot_tbltranslation
 Table "avail.snapshot_tbltranslation"
 Column | Type | Modifiers
-------------+------------------------+-----------
 src_db | integer |
 src_tblname | character varying(255) |
 dst_tblname | character varying(255) |
 col_name | character varying(255) |
 col_type | character varying(30) |

22

Destination tables
CREATE OR REPLACE FUNCTION snapshot_create_table_ddl(varchar, varchar) RETURNS text AS $$
DECLARE
 v_dst_tblname ALIAS FOR $1;
 v_suffix ALIAS FOR $2;
 v_create_def TEXT;
 v_index INTEGER;
 v_tbltranslation RECORD;

BEGIN
 v_create_def := 'CREATE TABLE ' || v_dst_tblname || '_' || v_suffix || ' (';
 v_index = 0;
 FOR v_tbltranslation IN SELECT col_name, col_type
 FROM snapshot_tbltranslation WHERE
 dst_tblname = v_dst_tblname LOOP
 IF v_index > 0 THEN
 v_create_def := v_create_def || ', ';
 END IF;
 v_create_def := v_create_def || ' ' ||
 '"' || v_tbltranslation.col_name || '" ' ||
 v_tbltranslation.col_type ;
 v_index := v_index + 1;

 END LOOP;
 v_create_def := v_create_def || ') ';
 return v_create_def;
END
$$ LANGUAGE 'plpgsql';

CREATE OR REPLACE FUNCTION snapshot_create_table(varchar, varchar) RETURNS void AS $$
DECLARE
 v_sql text;
BEGIN
 SELECT INTO v_sql snapshot_create_table_ddl($1,$2);
 EXECUTE v_sql;
END;
$$ LANGUAGE 'plpgsql';

23

Performing a snapshot (1)
CREATE OR REPLACE FUNCTION perform_snapshot(text) RETURNS varchar AS $$
DECLARE
 v_src_tblname ALIAS FOR $1;
 v_dst_tblname TEXT;
 v_dbi_dsid INTEGER;
 v_index INTEGER;
 v_insert_sql TEXT;
 v_select_sql TEXT;
 v_remote_sql TEXT;
 v_cast_sql TEXT;
 v_qry TEXT;
 v_sql TEXT;
 v_table_exists INTEGER;
 v_job_id INTEGER;
 v_step_id INTEGER;
 v_rowcount INTEGER;
 v_current_snap_tbl VARCHAR;
 v_snap_suffix VARCHAR;
 v_ttrans snapshot_tbltranslation%ROWTYPE;
 v_pds record;

BEGIN
 SELECT INTO v_dst_tblname DISTINCT(dst_tblname)
 FROM snapshot_tbltranslation WHERE src_tblname = v_src_tblname;
 IF v_dst_tblname IS NULL THEN
 RAISE EXCEPTION 'No translation for table %', v_src_tblname;
 END IF;
 SELECT into v_job_id autonomous_job_log_add_job('' || v_src_tblname);
 v_dbi_dsid := 1;
 v_current_snap_tbl := determine_view_src(v_dst_tblname);

 IF v_current_snap_tbl = 'snap1' THEN
 v_snap_suffix = 'snap2';
 ELSE
 v_snap_suffix = 'snap1';
 END IF;

24

Performing a snapshot (2)

select string_to_array(v_dst_tblname, '.') as oparts INTO v_pds;
 select INTO v_table_exists count(1) from pg_tables
 WHERE schemaname = v_pds.oparts[1] AND
 tablename = v_pds.oparts[2] || '_' || v_snap_suffix;
 IF v_table_exists = 0 THEN
 PERFORM snapshot_create_table(v_dst_tblname, v_snap_suffix);
 ELSE
 SELECT INTO v_step_id
 autonomous_job_log_add_step(
 v_job_id,
 'autonomous truncate and vacuum ' || v_dst_tblname || '_' || v_snap_suffix
);
 EXECUTE 'select remote_do(3, ''TRUNCATE TABLE ' || v_dst_tblname || '_' || v_snap_suffix || ''')';
 EXECUTE 'select remote_do(3, ''VACUUM FULL ' || v_dst_tblname || '_' || v_snap_suffix || ''')';
 PERFORM autonomous_job_log_upd_step('OK', 'done', v_job_id, v_step_id);
 END IF;

25

Performing a snapshot (3)
 SELECT INTO v_step_id autonomous_job_log_add_step(v_job_id,
 'snapping into ' || v_dst_tblname || '_' || v_snap_suffix);
 v_qry := 'select * from snapshot_tbltranslation where src_tblname = ' ||
 quote_literal(v_src_tblname);
 v_insert_sql := 'INSERT INTO ' || v_dst_tblname || '_' || v_snap_suffix || ' (';
 v_select_sql := ' SELECT ';
 v_remote_sql := 'remote_select(' || v_dbi_dsid || ',''select ';
 v_cast_sql := ' t(';
 v_index := 0;

 FOR v_ttrans IN EXECUTE v_qry LOOP
 IF v_index > 0 THEN
 v_insert_sql := v_insert_sql || ',';
 v_select_sql := v_select_sql || ',';
 v_remote_sql := v_remote_sql || ',';
 v_cast_sql := v_cast_sql || ',';
 END IF;
 v_insert_sql := v_insert_sql || '"' || v_ttrans.col_name || '"';
 v_select_sql := v_select_sql || 't."'|| v_ttrans.col_name || '"';
 v_remote_sql := v_remote_sql || upper(v_ttrans.col_name);
 v_cast_sql := v_cast_sql || '"' || v_ttrans.col_name || '" ' || v_ttrans.col_type;
 v_index := v_index + 1;
 END LOOP;
 v_insert_sql := v_insert_sql || ')';
 v_select_sql := v_select_sql || ' from ';
 v_remote_sql := v_remote_sql || ' from ' || v_src_tblname || ''')';
 v_cast_sql := v_cast_sql || ')';

 v_sql := v_insert_sql || v_select_sql || v_remote_sql || v_cast_sql;

26

Performing a snapshot (4)
 EXECUTE v_sql;
 GET DIAGNOSTICS v_rowcount = ROW_COUNT;
 PERFORM autonomous_job_log_upd_step('OK', 'good (' || v_rowcount ::varchar || ') rows',
 v_job_id, v_step_id);
 IF v_rowcount IS NOT NULL THEN
 EXECUTE 'ANALYZE ' || v_dst_tblname || '_' || v_snap_suffix;
 SELECT INTO v_step_id autonomous_job_log_add_step(v_job_id, 'swapping view');
 EXECUTE 'CREATE OR REPLACE VIEW ' || v_dst_tblname || ' AS ' ||
 'SELECT * FROM ' || v_dst_tblname || '_' || v_snap_suffix;
 PERFORM autonomous_job_log_upd_step('OK', 'using ' || v_dst_tblname || '_' || v_snap_suffix,
 v_job_id, v_step_id);
 PERFORM autonomous_job_log_complete_log(v_job_id);
 ELSE
 PERFORM autonomous_job_log_failed_log(v_job_id);
 END IF;
 RETURN v_dst_tblname || '_' || v_snap_suffix;
 EXCEPTION
 WHEN RAISE_EXCEPTION THEN
 RAISE EXCEPTION '%', SQLERRM;
 WHEN OTHERS THEN
 RAISE NOTICE '%', SQLERRM;
 PERFORM autonomous_job_log_upd_step('BAD',
 'snapshot failed (' || coalesce(SQLERRM, 'unknown error') || ')',
 v_job_id, v_step_id);
 PERFORM autonomous_job_log_failed_log(v_job_id);
END
$$ LANGUAGE 'plpgsql';

27

Replication (really)
Through a combination of snapshotting
and DML replay we:

replicate over into over 2000 tables in PostgreSQL
from Oracle

snapshot replication of 200

DML replay logs for 1800

PostgreSQL to Oracle is a bit harder

out-of-band export and imports

28

Datawarehouse

Log Importer
Data Exporter

OLTP warm backupOLTP

Oracle 8i

0.5 TB

Hitachi

0.25 TB

JBOD

Oracle 8i

0.75 TB

JBOD

MySQL 4.1

1.2 TB

IDE RAID

MySQL

log importer

1.2 TB

SATA

RAID

PostgreSQL 8.1

0.5 TB

Hitachi

1.5 TB

MTI

3.5 TB

XServe

RAID

New Architecture

29

Results
Move ODS Oracle licenses to OLTP

Run PostgreSQL on ODS

Save $500k in license costs.

Spend $100k in labor costs.

Learn a lot.

30

